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ABSTRACT

Pseudospectral approximations in unbounded domains by Laguerre polynomials lead to

ill-conditioned algorithms. We introduce a scaling function and appropriate numerical pro-

cedures in order to limit these unpleasant phenomena.
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1. Introduction

Recently, spectral methods have been successfully applied in the approximation of dif-

ferential boundary value problems defined in unbounded domains. At the present, different

solution techniques are available. Among these, an approach consists in using the collocation

method based on the nodes of Gauss formulas related to unbounded intervals. This involves

computations with orthogonal polynomials, such as Laguerre or Hermite polynomials. For

details about theory and numerical experiments we refer for instance to [2], [5], [6], where,

for certain classes of problems, a spectral type convergence behavior is shown. In this paper

we are concerned with the implementation of these methods. In fact, computations with

Laguerre or Hermite polynomials lead to ill-conditioned algorithms and undesired round-off

errors instabilities, even when the degree is low. After recalling some basic properties of such

polynomials, our aim is to give suggestions in order to improve the performances in practical

applications.

2. Preliminary Properties and Remarks

We review some basic properties of Laguerre polynomials. Let a > -1 be a real parameter

and let L_") denote the n-degree Laguerre polynomial. For any neN, L_ '_) is solution to the

following Sturm-Liouville problem (see [8]):

d 2 ,/

with the normalizing condition:

= 0,w ]0, +oo[, (2.i)

L_..)(O)=(n+a) F(n+cz + 1)= (2.2)

The determination of L (') at a given point x can be performed via the recurrence formula:

L(o")(x) = 1

= l+a-x

= ¼[(2n+a- 1- _)L_(_)-(,_+a- 1)L_,(_)I , n_>2.

(2.3)

This procedure has a cost proportional to n. Of course, the evaluation of dL(_) at a point



x, is given by the recurrence formula obtained by differentiating (2.3), i.e:

_-_x 0 _ j =0

d LC..)(x_
_-_x 1 _ j = -1

dx n , , n n n -
(2.4)

Moreover, after defining the weight function w(_)(x) = x"e -*, xc]O, +_[,a > -1, we have

the orthogonality relation:

fo+O°L(,.)L_)w(_.)dx = 5,. r(n + a + 1)n! ,n, meN. (2.5)

Figure 2.1 - Plot of L(,,°), for n = 1, 20.

As we shall see in the next, the expressions (2.3) and (2.4) are those mainly used in prac-

tical applications. Unfortunately, due to the particular structure of Laguerre polynomials,

(2.3) and (2.4) are sources of numerical instabilities. A look to the plot of the first twenty

polynomials (see Figure 2.1) gives an idea of the troubles one can expect. In Figure 2.1,

we have a = 0 and the plots are contained in the rectangle [0, 70] x [-5000000, 5000000].

Even for small values of the degree n, it is impossible to get a reasonable picture. Relatively
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small values in the first part of the abscissas interval have to be compared with very sharp

oscillations in the second part. From the theoretical point of view, we can give the following

asymptotic results (see [8]).

Proposition 2.1 - For any a > -1 and n > 2 the values of the relative mazima of.

e-Z/2x(a+l)/21L(a)(x)l form an increasing sequence when x > xo where:

0_ 2 -- 1

zo = O if a s < l, Zo - 2n + a + l if a> 1.

Proposition 2.2 - For any a > -1 and x0 > 0, we can find a constant C > 0 such that:

max l_-=/_=(_÷_)/_nC_)(=)l_ c_1/%_/_. (2.6)
x_]_0,+oo[

From the previous statements one concludes that, even when multiplied by a decaying ex-

ponential, Laguerre polynomials are not easy to keep under control. We will analyze in the

next section more about this subject.

Similar properties to those presented above are satisfied by the family of Hermite poly-

nomials. According to [8], the n th degree Hermite polynomial H_ is defined to be a solution

of the differential equation:

H"(x)- 2_H:(_) + 2.g.(x) = 0, W_R, (2.7)

with the conditions:
n_

g.(0) = (-1)"/_(_/2)! if_ iseven, (2.8)

(n + 1)! if n is odd. (2.9)
H:(0) = (-1)('*-1)/2 (( n + 1)/2)[

Again we have a recurrence formula, namely:

I Ho(x) -- 1
Hi(z) 2x

H,,(x) 2zg,_l(x)- 2(n- 1)H,_u(x), n > 2.

(2.10)

Orthogonality is also achieved in view of the next expression:

u,,(_)/-/,_(_)e- d_ = 6,,_v'72",_!, ,%m_N. (2.11)

Considerations similar to those previously discussed, concerning the implementation of for-

mula (2.10), also hold. Actually, the two families axe closely related by the following equali-

ties:

H,_(x) = (-1)'q'2'_(n/2)[L(-/_12)(2), if n is even, (2.12)



H,_(x) = (-1)("-1)/22"((n - 1)/2)!xLl_!2__)/2(x_), if n is odd. (2.13)

3. Scaled Laguerre Functions

As we noticed in Section 2, the determination of L_'_)(x) for a given x, brings to an ill-

conditioned algorithm. According to Propositions 2.1 and 2.2, we can try a first experiment.

Instead of computing L_')(z), we could evaluate L(_')(z) = e-X/2L_")(z). This can be done

by just modifying the first two terms of (2.3) by setting L(0a)(x) = e -x/2 and L_')(z) =

(1 + a - z)e -_/2. In this way, when z is large we can avoid overflow errors. The plots of

L(,,") for a = 0 and n = 1,20 are given in Figure 3.1. This time they are all included in the

rectangle[0,701× [- 1,11.

Figure 3.1 - Plot of L_), for n = 1, 20.

Nevertheless, the new recurrence formula is still ill-conditioned. In fact, when x is large,

the determination of L(0'_)(x) gives rise to underflow problems. Our goal is to find a more

suitable scaling function. In order to be really effective, this function, denoted by S,_(z), has

to actually depend on both z and n. Then, we would like to define:

]_,(")(x) = S,,(x)L_')(x), neN, xe]O, +oo[. (3.1)



( )-"We can try first by setting: S,_(x) = 1 -5 _ , n > 1. In this way, for any fixed n, S_ 1

behaves like a polynomial and, for any fixed x, we have lin__.oo S,_(z) = e -x/2. After such

a scaling, computations seem to be more flexible. An appropriate recursive formula can be

written for L('9. Unfortunately, one can check that, with this choice of S,_, the cost for

implementing the formula is proportional to n _.

Therefore we suggest another scaling function, i.e.

n IIk= 1 1+ , nkl, (3.2)

and we take S0(x) = 1. Thus we obtain the following formula:

L(o")(x) = 1

(a -5 1)(x -5 4)

4(,_- 1)*L(_,(.)],,_> 2.4n [(2n -5 a - 1 - x)L(_l(x) 4-_- _t_)(_) = (n + ,_)(4,_+ _)
(3.3)

From (3.3) we can obtain the value of L(_)(x) at a given x, with a cost proportional to n. In

the next, we shall refer to L("), obtained by (3.1) with the help of (3.2), as scaled Laguerre

functions.

Figure 3.2- Plot of]_,(,,°),for n = 1,20.



It is clear that these are not polynomials. Their structure is more appealing for numerical

tests. The plot of the first twenty scaled Laguerre functions (with a = 0) is given in Figure

3.2. Now all the plots are included in the rectangle [0, 70] x [-500,500]. The computational

range is reduced. We make clear this fact by a numerical experiment. In the first column

of Table 3.1 we give the values of IL_°)(x)/L(4°o)(Z)l for various x. There is a difference of

13 digits between the highest and the lowest value. In the second column of Table 3.2, we

report [L?)(x)/L_°)(x)]. Now the width is reduced to 5 digits.

X

i0

20

30

40

50

60

70

80

Column 1

7.273E-00

1.779E-00

1.607E-03

2.405E-05

1.954E-07

1.786E-09

1.638E-11

2.187E-13

Column 2

3.129E + 03

1.035E + 05

6.215E + 03

3.743E + 03

8.379E + 02

1.554E + 02

2.285E + 01

4.015E + 00

Table 3.1 - Comparison between Laguerre polynomials and scaled Laguerre functions.

We remark that L_")(O) = 1, VneN. For convenience we also give the formula to compute

the derivatives, i.e.:

d L(_), ,_ otX) = 0

 vz)(x) ,°= (,_+_)(e,+x)
a - 1 - x _ d L(,,,) (x,_ 6_+=-1L(,:,) tz_±

1"_ n-lk ]- 4n+z n-lk 1_

(3.4)

+4._Ia: _ ( 2 4,,+_-2) _(_.), , d L(..) (z_]4,,+=-4 _,(4,_=)(4,,+=_4)z',,-2_. x) - _ ,,-2_ j/j , n _> 2.

We will see in the next section how to apply the scaled functions to pseudospectral compu-

tations.



4. Numerical Integration

Let N > 1 be an integer. Let us define _('*) k = 1, , N to be zeroes of L_ ),a >-1.__ 'lk,N , " " "

It can be shown that "(')'lk,N > 0, k = 1,...,N. Then define the weights:

1" (_)
w(.. ) F(N + a + )r/k,, k = 1 ... N. (4.1)

= _r(=) :_("_) _12' ' '
k,. (N + I)![(N+ I:.N+,<,,k,Njj

The following quadrature formula is known (see for instance [8]):

f0+oo N P(N + a + 1)fw(,,)dx _., (=>, ¢,_) f(2N)(_), (4.2)
= ]t'r/k'N)Wk'N + N!(2N)!

k=l

where 0 < _ < +oo. In particular, the second term on the right hand side vanishes when

-_(") and
f is a polynomial of degree at most 2N - 1. For convenience, we shall set 771, = 'lk,N

- (") We are concerned with the numerical evaluation of r/k and wk, k = 1, ...N. An
Wk -= "k,N"

approximation of the zeroes of L_ ) can be obtained by the following procedure (see [7] and

[8]). We first define Yk, k = 1,..., N to be solutions of the equations.

Yk--sinyk=27r N-k+3/4 k=l,.. N. (4.3)
2N+a+l ' "'

Afterwards we set zk = [cos({yk)]2,k = i,...,N, and finallywe get:

1 [5 i I+3a2] (4.4)r/k"m2(2N+a+l)zk+-6(2N+a+l) 4(1-zk) 2 l-zk

Starting from this approximated value for r/k, we can refine it by very few iterations of the

Newton method. The computed zeroes are in general very accurate. However, evaluating

L('0, (=), d T(_), (,-) _ .,N (r/k,N) and _bN (77k,N:, k = 1,.. N, in order to use the Newton method, may give

proble whenpenormeahy (2.3)and(24) Nevertheless,sincethezeroesof are the
same than the zeroes of L_ ), we can use (3.3) and (3.4). This allows the determination of the

zeroes for larger values of N. Concerning the weights, they are decreasing and converging

to zero very fast. It is convenient to define other weights as follows (recall (3.2)):

w^(_) _bk - wk
k,N : -

£(N+a+ 1)r/k [ 4(N+ 1) ]2 (4.5)
= (N + 1)!I'(a + 1) (g + a + 1)(4N + 4 + r/k)L_)+l(r/k)

The new weights are in the machine range for larger values of N. Of course, one has to

write:

(N + i)! N + 1 N



obtaining a more reliable algorithm.

If p is a polynomial of degree at most 2N - 1, from (4.2) and (4.5) we obtain:

N

fo+ = (4.7)
k--1

Moreover, if UN is a polynomial of degree at most N, we have:

N

fo+_ u_w(") dx ,._ _ [(UN SN )(_lk )]*_bk. (4.8)
k=l

This suggests to work with UNSN instead than uN when approximating the solution of a

differential equation by the collocation method based on Laguerre polynomials. We analyze

in the next section in which way this can be actually done.

5. Pseudospectral Laguerre Approximations

Let us focus our attention on a very simple equation, namely:

-U=+,_U = fin]0+oo[,A>0,

u(0) =

lirn,__+oo U(x) = O.

(5.1)

Under suitable assumptions on f and A, one can prove that there exists a unique solution of

(5.1) (see [2]). For approximations with Laguerre polynomials we require for V an exponential

decay at infinity. By setting V = Ue', problem (5.1) becomes:

{ -V_x + 2Vx +(A- 1)V = gin 10,+oo[,v(o) =%
(5.2)

where g = re'.

Keeping the same notations of the previous section, let r/k, k = 1,..., N be the zeroes of

L_ ). Then the solution of (5.2) is approximated by a polynomial VN of degree less or equal

N satisfying the collocation problem:

{ --VN,..0lk) + 2VN,.(r/k) + (A -- 1)VN(r/k) = g(r/k),
,,N(O) ='y.

k = 1,...,N,

(5.3)

As usual (see [1] and [4]), (5.3)is equivalent to an appropriate linear system whose unknowns

are vN(_k), k = 1,..., N. When N tends to infinity, v_ converges to V in a suitable weighted

Sobolev space (see [2]).
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The basic tool for computations is the derivative operator DN in the space of polynomials

of degree N. With the aim of getting the entries dij, i,j = 0,..., N of ON, we consider the

Lagrange polynomials with respect to the nodes 7]k, k = 0,..., N where we defined 7/0 = 0).

These are given by:

__, j = 1,...,lv, (5.4)

lo(_)- L_7)(0).

The lj's are polynomials of degree N. Then we have

I

dij = lj0?i) i,j = O,...,N.

(5.5)

(5.6)

Moreover for any polynomial p of degree at most N, one gets:

N

dilp(_j) -- p'(_,), i = 0,... ,N.
j=O

(5.7)

The following useful relations can be recovered from (2.1):

L )(_?J)az= _?j dz
j = 1,...,N, (5.8)

d L_)(0)= __+ 1L_)(0) '

d___2L_)(O ) = N(N- 1)2)L_)(0),(d¥ v)(_+

(5.9)

(5.10)

5L_)(r/j ) = [(r/i - a - 2)(r/j - c_ + 1) N-1] dL_)(_?j), j 1,.. ,N.
_ o

7Ij

(5.it)

9



Thus, with the help of (5.8)- (5.11),one gets:

7,_.L_)(¢) 1
7 d L(,-), ,

dq :

1 -a+zli

27_

L(a)(0)
77s d r.(a)f,,._

i,j = l,...,N, i T_ j,

i =j = 1,...,N,

i = 1,...,N,j = O, (5.12)

j = 1,...,N,i = O,

N
i=j =0.

a+l

The second derivative operator is obtained either by squaring D N either by evaluating/[(7i).

In the last case, recaning (5.8)- (5.1t), we have:

'L (')" ' (1 +rl,)(7, 7j) 2r/iN it/i) - a - -
,t (,_) i,j=l,. N, iCj,7j_LN (_j) (7,- nJ)' ""

(r/i _;)2 N- 1
"3_--- 3rh i= j = 1,...,N,

d L(,_), ,
t_'(_,)= _ + 1- 7,r_ N t_,)

7_ L_)(0) i = 1,... ,N,j = O, (5.13)

2(N+a+l) L_)(0)

_3(a + 1) a L(")67 _ j = 1,...,N,i= O,
Nkj)

N(N-I)
(_+ i)(_+ 2) i =j = 0.

After taking into account the boundary conditions, we end up with the matrix corresponding

to the linear system (5.3).

As pointed out in the previous section, Laguerre polynomials are not suitable for com-

putations. However we can use scaled Laguerre functions. Therefore, we define 0k =

VN(7k)SN(7k), k = 0,..., N. The 0k's will be the new unknowns. Besides, we define a new

matrix/)N = {dq} as follows:

dq = dij SN07') i,j = 0,... N. (5.14)
s_(Tj)'

10



Due to (5.7) wehave:
N N

I

SN(_I,)vN(_i) = SN(_/,) _ dovN(711) = _ d,j_j, i = 0,... ,N. (5.15)
j=0 j=o

Similar relations hold for higher order derivatives. Thus, by multiplying the equations in

(5.3) by S_v(rlk), k = 0,...,N we can easily obtain a new linear system in the unknowns

_j,j = 0,..., N, involving the knowledge of the coefficients dij instead than dij. The dij's are

less affected by ill-conditioning problems, since they are related to scaled Laguerre functions.

In fact, we observe that:

Moreover:

Finally, we define:

sNdL(N,.) d L(_,) t(")o d/¢-la= N + "N J. (5.16)

d 1 ] n 1 (5.17)S N -_--_x(S _ ) (x ) = _ 4 k -+ x"
k---1

d _(,,)trh _ Jv 1
Q'=_xx N, 'J+]-'_)(V'))--_4k+(,' i-O,...N.

k--.1

Therefore, by substituting in (5.12), one gets:

_Q_ 1

rh - 'r/j

1 -a+_

d,,= Q,

-1
_-5-A-
,TjQj

-N

(5.18)

i,j=l,...,N,i#j,

i = j = l,...,N,

i = 1,...,N,j = O, (5.19)

j = l,...,N,i = O,

i=j =0.

We can argue similarly for the second derivative matrix. After solving the new preconditioned

system we obtain _j,j = 1,..., N. After this, one can recover the values v,_(_lj), j = 1,..., N,

which are in general very large, when j is close to N. On the other hand, these values are

associated to the weight wi that is negligible when j is close to N. Nevertheless, we remark

that in order to evaluate the weighted norm of v_, one does not need to know its values at

the collocation nodes. Actually, recalling (4.8) we have:

N

f0 V 2N_I}("_) d T, vjwj.^_" (5.20)
j----1

11



The right-hand side of (5.19) is now more suitable for computations. The procedurehere
describedcan be clearly generalizedto other kinds of problems.

6. Hermite Approximations

All we developed above for Laguerre polynomials can be extended to cover the came of

Hermite polynomials. In analogy with (2.12) and (2.13), it is convenient to define the scaled

Hermite f_nc_ions as follows:

In particular, we obtain:

/:/n(x) _-(-_/_)r..,,2;

/:/_(x) _(1/2) , 2,= x.L,(,.,_l)/2_,x ),

if n is even, (6.1)

if n is odd. (6.2)

/:/,,(0) = 1, if n is even, (6.3)

/:/',_(0) = 1, if n is odd. (6.4)

The derivative matrices for the Herrnite case have been presented in [3]. These matrices

can be suitably preconditioned when using scaled Hermite functions. As before, the scaling

procedure we adopt, is only to be considered as a trick to perform computations in a better

way. Theoretical analysis and convergence estimates remain the same, since the collocation

scheme is not actually modified. Of course, improvements could be expected when adopting

other functions S,, in place of (3.2).
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